

JOHN TUCKER PAGE 1

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Talend connect to AWS and Snowflake
Tutorial

In this tutorial we will be examining connections from Talend to various AWS services and the

Snowflake Data Warehouse package. In AWS we will use S3, SQS and EC2 services together with

Lambda functions. To demonstrate the usage the following scenario will be modelled.

A retail company employs staff at several different sites which open 12 hours daily with a staffing

FTE (full time equivalent) level of 5. Each store has a pool of 20 staff who work 6-hour shifts and to

fulfil the FTE, any 10 of the 20 staff will be required each day. The timesheets for each day are

produced by an external system that periodically sends a data file in JSON format to an Amazon S3

bucket owned by the company, who will then load the information from this file into their Snowflake

database, for further analysis.

In the example a single timesheet file for each week will be produced for all stores in a simulated

process, as is the creation of staff records. These simulations are useful for demonstrating Talend

concepts.

Requirements

To undertake this assignment, the following software and accounts are required.

• Talend Big Data Studio community edition version 7.3 or later.

• Amazon Web Services account, all examples are free tier eligible

• Snowflake account, trial version used in this tutorial.

• Java 8 JRE for installation onto AWS EC2 instance.

Design Overview

Store staff records will be created by a Talend job and stored in a Postgresql table hosted via RDS an

AWS. A second Talend job running on an EC2 instance will extract data from the staff database and

use it to simulate the generation of timesheets. These will be written to a JSON format file and be

copied to an S3 bucket. An AWS Lambda function written in Python responds to an S3 trigger event

raised by placement of the file into the bucket and writes the file key to the body of a message,

which is placed on an AWS SQS queue. A final Talend job also running on EC2 responds to the SQS

message and retrieves the file key from the message body.

JOHN TUCKER PAGE 2

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

The key is used to download the JSON file from S3 and its contents are parsed and reordered before

being written to a table in Snowflake. Both Talend jobs running on the EC2 instance use context files

to load the initial variables

The use of the Lambda function allows serverless technology to be used to automate the snowflake

load on receipt of a timesheet file.

The following illustration shows the design concept.

Task List

Before generating the Talend jobs for this project there are several configuration tasks to be

undertaken. The following table provides a check list of these:

JOHN TUCKER PAGE 3

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

No Task Description

1 Create Postgresql instance on AWS
RDS

Working in the AWS console for RDS, create a
new Postgresql instance.

2 Add database and table to Postgres Using the instance created previously create a
database and table within it to hold details of
store staff.

3 Setup Snowflake schema. Create a new database in Snowflake and add a
table to store staff hours.

4 Create AWS S3 bucket Create a bucket in the S3 console for timesheet
files to be loaded into.

5 Generate AWS Keys Generate AWS key pair and download for use in
connecting to S3 and SQS.

6 Create an EC2 Instance Create AWS EC2 instance for Talend standalone
jobs to run on.

7 Install Java 8 JRE onto EC2 Install the java runtime onto the EC2 instance
created previously. This will allow Talend
standalone jobs to run on the server.

8 Create S3 role for EC2 Create a role with access to S3 buckets and
assign the role to the EC2 instance to allow
applications access to S3.

9 Create AWS SQS queue Create a FIFO queue in AWS which will be
written to by Lambda and consumed by Talend.

10 Create AWS Lambda function Create a serverless Lambda function in AWS
triggered by S3 input that write file key from the
trigger into an SQS message. Code will be written
in Python, directly into AWS console.

11 Create job to generate store staff Create Talend job to generate store staff.

12 Create job to generate timesheets Talend job to create timesheets and write as a
JSON file to the S3 bucket. This will trigger the
Lambda, writing a message to SQS.

13 Create job to write to Snowflake Job that loops indefinitely, reading SQS queue
and retrieving data from S3. Output goes to
Snowflake database.

14 Deploy jobs to EC2 Deploy the 2 Talend jobs that will be ran on the
EC2 server.

JOHN TUCKER PAGE 4

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

 Each task will be examined in turn.

1. Create Postgresql instance on AWS RDS
To add a new PostgreSQL database into AWS RDS an instance must be created. Log onto AWS

management console and enter the RDS option. Click on the Create Database button.

In the Create Database dialog select PostgreSQL from the Engine options box and check the box to

use the Free tier template.

JOHN TUCKER PAGE 5

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Give the instance a name, in this case jt-dbpostgresretailpoc, accept all defaults and click Create. The

instance will be created, and this can be checked by selecting Databases from the left-hand side

menu and clicking on the instance name. Information regarding the instance including endpoint and

port details will be displayed.

2. Add database and table to Postgres
The previous step has launched a PostgreSQL instance in AWS, but we now need to create a

database and table within the instance. This is achieved by connecting to the instance from outside

AWS by using the PGAdmin tool, the standard IDE for PostgreSQL.

JOHN TUCKER PAGE 6

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

In the PGAdmin browser pain right click on Servers and select Create > Server. In the first tab of the

dialog box enter the server name AWSPostgres.

Select Connection from the menu and enter the end point as defined in the AWS RDS instance

screen from the previous section, confirming that the port number is also correct. The maintenance

database can be left at the default value of postgres and the username/password should be the ones

defined in AWS.

Working again in the Browser pane, expand the AWSPostgres server and right click on the Databases

node. Select Create > Database from the menu and name it RetailPOC prior to saving.

JOHN TUCKER PAGE 7

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Right click the RetailPOC database in the Browser and select Query Tool from the menu.

Copy the following SQL statement into the query window then execute it:

CREATE TABLE public.tbstorestaff

(

 employee_no integer NOT NULL,

 store_code integer,

 first_name text COLLATE pg_catalog."default",

 last_name text COLLATE pg_catalog."default",

 CONSTRAINT tbstorestaff_pkey PRIMARY KEY (employee_no)

)

The table structure should now be visible in the Browser hierarchy as below:

JOHN TUCKER PAGE 8

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

The PostgreSQL table is now ready to receive data.

3. Setup Snowflake schema.
Log in to the Snowflake account and select the Databases option from the ribbon menu. Click on

Create and enter the name of the database RETAIL_POC in the name field and press Finish.

JOHN TUCKER PAGE 9

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

The database will now be shown in the list as below.

Click the Snowflake icon at the left-hand end of the ribbon to open a query window. Select the

RETAIL_POC database and the PUBLIC schema, then paste the following code into the query

window:

CREATE OR REPLACE TABLE "RETAIL_POC"."PUBLIC"."TBSTAFFHOURS" (
 STORE_CODE NUMBER(38,0),
 DAY_NO NUMBER(38,0),
 HOURS_WORKED NUMBER(38,0),
 EMPLOYEE_NO NUMBER(38,0),
 LAST_NAME VARCHAR(16777216),
 WEEK_NO NUMBER(38,0),
 FIRST_NAME VARCHAR(16777216)
);

JOHN TUCKER PAGE 10

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Run the query which will create the table. Selecting the Databases option from the menu will now

display the TBSTAFFHOURS table. Clicking on the table name should display the definition.

Snowflake is now ready to receive the test data. Since we will be accessing the table directly using

our Snowflake account there is no need to worry about permissions. In the real world it would be

necessary to set up the correct access.

4. Create AWS S3 bucket
An S3 bucket is created to store the JSON files simulating employee hours worked sent from an

external application. Since access will be controlled by a key pair, public access is not required and

the setup will be relatively simple, predominately using default values for security.

Within AWS navigate to the S3 console and click Create Bucket. Give the bucket a unique name and

everything else can be left as default. My bucket name is emeraldmill.sales but any unique name is

fine. Press the Create Bucket button once complete.

JOHN TUCKER PAGE 11

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

 The bucket will be created and will appear in your list of buckets.

Clicking on the name will take you to the property pages and display the list of objects currently

stored in the bucket. Initially this will be empty, but the illustration below shows the bucket after

some files have been loaded.

5. Generate AWS Keys
Authentication for the S3 bucket in this POC will use public key cryptography. A key pair generated

withing AWS will grant root user access to AWS services. In practice this would be a serious security

weakness and a user with the minimum clearance to perform necessary tasks should be created. A

key pair against this more restricted user could then be generated limiting access to just necessary

areas.

To generate an access key, go to the AWS IAM dashboard and click on the My access key link on the

right-hand side of the screen.

JOHN TUCKER PAGE 12

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

This takes you to the security credentials page. Expand the Access Keys section and click on Create

New Access Key.

Another way of getting to this screen is from the drop-down account menu on the ribbon at the top of

all console screens. Select the My Security Credentials option.

The key pair will be created and can be downloaded in a text file. Keep this file in a secure place so

the key values can be used later.

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

JOHN TUCKER PAGE 13

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

It is common practice to have several keys created with all but one set de-activated. The active key is

then changed on a cyclic basis to form an additional layer of security. This is known as key rotation.

6. Create an EC2 Instance
Two of the Talend jobs will run as standalone jobs on a dedicated server. Creation of timesheet files

will run on demand whereas the consumption of these files is a process that loops continuously

once initiated. The server will be an AWS EC2 instance and the only pre-requisite will be installation

of Java 8. There is no requirement for Talend Studio to be installed as all dependencies are included

in the standalone jobs which build in a similar way to a fat jar.

From the AWS EC2 console click on the Launch Instance button to create a new virtual server.

The first stage is to choose the Amazon Machine Image (AMI) on which the new server will be based.

Click the Free tier only option on the left-hand pane and scroll down to the Microsoft Windows

Server 2019 Base option and select.

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

JOHN TUCKER PAGE 14

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

The instance type for Free Tier eligibility will already be selected so click Review and Launch to

initiate the instance.

The details of the instance will be displayed. For this proof of concept, the defaults are all fine so

click Launch to start the server.

JOHN TUCKER PAGE 15

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

To launch the server, you will be asked to either use an existing key pair or you can create new ones.

These are different from the key pairs generated earlier and relate specifically to EC2 instances.

Using these allows you to access the instance via remote desktop (RDP). When a key pair file is

generated keep it in a known place so it can be accessed when required.

JOHN TUCKER PAGE 16

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Check the acknowledgement box and launch the instance. The instance will now start and be

displayed in the Instances list. The next thing to do is to give it a name and the field can be edited

directly in the Name field.

To connect to the server from your local machine click on the Connect button with the server

selected in the list. A dialog box will present 2 options: Download Remote Desktop File and Get

Password.

Download the RDP file first and save in a suitable location then click on Get Password. Specify the

key pair by clicking Choose file.

JOHN TUCKER PAGE 17

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Click on Decrypt Password and you will return to the previous screen but with the password now

visible. Store this password in a safe place as it will be needed any time you RDP onto this server.

Looking at the RDP file generated for the instance, full address and username are specified.

The address matches the public IPV4 DNS shown in the AWS console.

JOHN TUCKER PAGE 18

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

To connect to the server, double-click the RDP file to call the desktop client. Enter the password

created and saved previously then press OK.

A remote desktop session to the server should now be established and any configurations can be

made in the same way as if it was a local pc. The EC2 server is now ready to have Java installed.

JOHN TUCKER PAGE 19

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

The public IPV4 address only applies to the running instance. If it is stopped and restarted later, a

common practice to save resource, the new running instance will have a different address. The old

RDP file will no longer create a connection so either create a new RDP file every time an instance is

restarted or it is much simpler to just update the DNS in the existing file with the new one from the AWS

console. In practice only the four octal byte values will change, the region and availability zone domains

remain constant so it may be easier to just change the numbers in the address. The password remains

constant for the life of the instance and is not affected by restarts.

7. Install Java 8 JRE onto EC2
For the Talend jobs to run standalone on the EC2 instance it is necessary to install the Java runtime

environment (JRE). Talend still recommends version 8 rather than 11.

Download the version 8 installer from the Oracle Java site.

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

JOHN TUCKER PAGE 20

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Click on the file to run the installer package and accept the defaults to install Java. This is a

straightforward process but in the event of problems there are numerous on-line resources

dedicated to the operation, so I won’t repeat it here.

Once the installation is complete the next step is to modify the environment variables on the server

to allow Talend to run communicate with the JRE correctly.

Working in the RDP session for the server, from the System Properties dialog click on Environment

Variables.

In the Environment Variables Dialog click New and add a value for JRE_HOME which points to the

java location. This should be C:\Program Files (x86)\Java\jre1.8.0_281\ if the standard installation

defaults were used.

JOHN TUCKER PAGE 21

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Save the variable by pressing OK then click on the PATH variable in the System variables section. Add

a reference to the JRE_HOME value to the path.

The Java environment is now setup for use by Talend. Notice that only the JRE is required for

runtime use, not the JDK. If you wished to install Talend Open Studio (TOS) on the server then the

JDK would be required as well.

8. Create S3 role for EC2
By default, an EC2 instance has no access to S3 so any jobs running on that server the need to access

a bucket will fail. To fix this a role implementing an S3 access policy can be assigned to the server. In

normal operations this role should be restricted to the minimum required access but for the proof of

concept a simple generalised policy will be used.

Working in the AWS IAM console select Roles from the right-hand pane and click Create role

JOHN TUCKER PAGE 22

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

In the Create role screen select AWS Service then EC2 from common use cases. Press

Next:Permissions to proceed.

Type S3 in the Filter policies box then check the box next to AmazonS3FullAccess and click Next:Tags

JOHN TUCKER PAGE 23

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Skip the tags screen and Review the role. Check the policy is shown then give it the name S3_Access

and click Create.

To attach the role to the EC2 instance, open the AWS EC2 console and select Instances from the

right-hand pane. Select the instance by clicking the check box in the right-hand column, then click

Actions, Security and Modify IAM role.

In the Modify IAM role screen, select the S3_Access role as defined previously and click Save to

assign the role.

JOHN TUCKER PAGE 24

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Note only 1 role can be applied to an instance and if other access requirements are necessary, their

policies would need to be added to the role.

The EC2 instance is now ready for use. Remember that it can be stopped when not in use and

restarted as needed to save resource, but it will restart with a new ipv4 address, so the RDP file will

have to be changed each time.

9. Create AWS SQS queue
A message queue is a useful way to transfer data between programs. Within Talend, ActiveMQ is

often used as it is built into the product, however there are many other queue brokers and AWS has

the Simple Queue Service or SQS.

Two types of queue exist: Standard where message ordering is not preserved and FIFO which

guarantees first in first out delivery. We will create a FIFO queue for the proof of concept.

From the AWS management console select Simple Queue Service and click Create Queue. Check the

FIFO radio button and name the queue RetailPOC.fifo. The rest of the config can be left as default for

this scenario then click Create Queue.

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

JOHN TUCKER PAGE 25

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

After creation the queue will appear in the list which was also show any current messages

available.

Clicking the queue name will take you to the detail screen which contains full information

including monitoring, plus the ability to send and receive messages to test the queue.

JOHN TUCKER PAGE 26

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

To test the queue, press the Send and receive messages option and in the Send Message section

add a test message and message group id and click Send message.

As this is a FIFO queue it must also have a message group id. FIFO queue logic applies only per

message group ID and all messages are sent and received in strict order. Enforcing the group id

increases flexibility of the queue allowing it to be serviced by multiple clients using either the same or

different group ids and utilising the FIFO capabilities as required. Standard queues do not use this

value as it would have no logical purpose and is not displayed in the queue creation screen.

Looking at the Receive message section the message is now shown as available. Click the Poll for

messages option to retrieve it.

Clicking on the message ID will show the contents.

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

JOHN TUCKER PAGE 27

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Return to the detail screen and select the Monitoring tab. Set the window to 1 hour and the details

of the messages sent and received will be displayed.

This is the default setup, which is fine for the POC, but it can be customised or extended according to

requirements.

-

The SQS queue is now ready for use.

10. Create AWS Lambda function
The design goal of the system is for it to respond automatically to the arrival of a file in the S3 bucket

and this is achieved by creating a serverless Lambda function triggered by the S3 arrival, which

writes the filename to the body of a message stored on the SQS queue defined in the previous

section. A Talend job can then monitor the queue and respond to any new messages.

Note Lambda functions are a component of serverless computing meaning that the function code is

passed to the service which itself takes care of hosting and execution without any configuration from

the user.

From the AWS console select Lambda then click on Create function.

In the Create function screen select Author from scratch, name it myLambda and choose Python 3.7

for the runtime. All other defaults are fine in this case so click Create function

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

JOHN TUCKER PAGE 28

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Lambda offers several choices of language including C#, Java. Node.js, Python and Ruby. Some can be

coded directly in the Lambda console whilst others such as C# use external tools such as visual studio.

For this simple example Python will be used for clarity.

In the function overview click the Add trigger button

Select S3 from the list and the bucket name from the drop-down options. In this case it will be

emeraldmill.sales. Other defaults can be left alone. Click the disclaimer at the bottom warning about

recursive functions and press Add to create the trigger.

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

JOHN TUCKER PAGE 29

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

In the code window copy and paste the following code:

"""

Your module description

"""

import boto3

import json

def lambda_handler(event, context):

 sqs = boto3.resource('sqs')

 file_key = event['Records'][0]['s3']['object']['key']

 queue = sqs.get_queue_by_name(QueueName='RetailPOC.fifo')

 response = queue.send_message(

 MessageBody=file_key,

 MessageGroupId='messageGroup1'

)

JOHN TUCKER PAGE 30

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Click on Deploy once complete to deploy the function in Lambda.

To test the function, select the test option from the menu and click New event and select Amazon

S3 Put from the template. Name it S3PutTest and in the “key” element change the value to be

“RetailPOCFile”. Save the changes and press Test to perform the evaluation.

To check the test has worked go the SQS console and select the RetailPOC.fifo queue. Click Send and

receive messages and scroll to the Receive messages section and Poll for messages

A message should be shown in the queue. Click on the ID to view the message and select the body.

JOHN TUCKER PAGE 31

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

A message showing the key of the S3 object that we modified in the Lambda test is displayed,

indicating that the function has responded correctly to the trigger and created the expected SQS

message.

Using the test mechanism, we have simulated the S3 event and no file has actually been deposited in

the bucket however the AWS template code is designed such that the presence of an actual file would

respond in exactly the same way.

The Lambda function is now complete and will be called anytime a file is loaded into the S3 bucket.

11. Create job to generate store staff
The prerequisites are now complete so we will now look at creating the Talend jobs in Open Studio

Big Data Edition. There will be three jobs to create the sales staff records, simulate the work hours

and provide a time sheet file and finally to process that file and load the data into SnowflakeDB.

The first job will use the Talend Row generator to simulate sales staff records for each store. The

details will be stored in a Postgresql database table.

In the studio repository create a new job and name it j101_GenerateSalesPeople.

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

JOHN TUCKER PAGE 32

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Add the following components to the design area:

Tprejob

tSetGlobalVar

tDBConnection

tLoop

tJava

tRowGenerator

tDBOutput

tDBCommit

JOHN TUCKER PAGE 33

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Join the components as follows:

From Component To Component Join Type

tprejob tSetGlobalVar OnComponentOk trigger

tDBConnection tLoop OnComponentOk trigger

tLoop tJava Iterate

tLoop tDBCommit

OnSubjobOk trigger

tJava tRowGenerator OnComponentOk trigger

tRowGenerator tDBOutput

Row Main

The job should now look like the diagram below:

Configure the components as follows:

tPrejob requires no configuration and just initiates a task each time the job starts and is guaranteed

to run prior to the main job.

tSetGlobalVar initialises the variable for holding the current store code in the global cache. Click the

component in the design area and select the Component tab in the bottom pane to show the editor.

JOHN TUCKER PAGE 34

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

From the Basic Settings option, press the green + icon to create a new row and name it

“vStoreCode”. Assign a default value of 0 then select the View option from the menu.

Add a user-friendly label to component by adding the expression “Initialise Globals
” to

the start of the Label format field which will show the label in bold together with the actual

component name underneath.

tDBConnection is used to connect to the Postgresql instance which is running in AWS RDS as

configured previously.

Select PostgreSQL as the database with version v9 or later. The Host value will be the URL shown in

the AWS RDS console for the instance. Port should be the standard value 5432 unless a different

setup has been used. The Database name will be RetailPOC and the public schema is used. Finally,

Username and Password refer to the local user set up in RDS for the instance. A shared connection

is not used in this case and since the job will just be ran in Studio a data source alias is not required

either and both check boxes can remain unchecked.

Go into the view option and label the component “AWS RDS Postgres Connection”.

JOHN TUCKER PAGE 35

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

tLoop is used to loop through the 8 stores used in the example and on each iteration run a routine to

generate 20 staff records and write them to the database table. On completion of the entire loop

the records will be committed, closing the transaction.

As we have a defined number of iterations, a For loop should be chosen going from 1 to 8 in

increments of 1. Label the loop “Loop Through Stores”.

tJava is used to assign the iteration value of tLoop to the global variable vStoreCode. Each call will

override the previous value, so it is not necessary to re-initialise the variable each time.

Label the component “Set Global Value”.

tRowGenerator is a Talend component that allows the generation of Random data in a readable

format. For the proof of concept, we will generate some skeleton employee data with an employee

number, store code, first name and last name. Store code and employee number will be generated

as functions of the loop iteration and the names will be assigned from the row generator.

Note the names will be all male. This is not overt sexism, rather that Talend uses a list of past USA

presidents to generate random names and to date these have all been male.

Click the Edit schema ellipsis to call the editor.

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

JOHN TUCKER PAGE 36

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Click the green + icon to add new rows of the following types:

employee_no Integer

store_code Integer

first_name String

last_name String

Press OK to save the schema then click on RowGenerator Editor.

JOHN TUCKER PAGE 37

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Insert the value 20 for the number of rows to be generated.

The schema fields will already be populated, click on each one in turn and perform the configuration

steps.

Field Actions

employee_no In the Functions drop down list select the Numeric Sequence option

In the Function parameters tab enter the following values:
Sequence identifier “s1”
Start value 1
Step 1

store_code Select the ellipsis option from the top of the drop-down function list
which indicates a custom value. In the Function parameters tab enter
the value ((Integer)globalMap.get("vStoreCode")) to retrieve the
current value of the Store Code global variable.

first_name Select TalendDataGenerator.getFirstName() from the Functions drop-
down.

last_name Select TalendDataGenerator.getLastName() from the Functions drop-
down.

Click OK to save the configuration then label the component “Generate Data Rows”

tDBOutput writes the generated rows to the database table.

JOHN TUCKER PAGE 38

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Select PostgreSQL as the database type and check the Use an existing connection box. In the

Component List select the DB connection defined previously. Enter “tbstorestaff” for the table and

leave the Action on table setting as Default. Action on data should be set to Insert, then click Sync

columns followed by Edit schema and verify the schema looks the same as below.

Click OK to exit the schema editor then label the component “Write to Postgres”

tDBCommit will finally commit the Postgres transactions and close the database connection.

Select PostgreSQL as the database type and choose the database connection component from the

list. Check the Close Connection option and label the component “Commit Postgres”

Ensure that the connecting tLoop to tDBCommit is of the type OnSubjobOk in order that it fires after

the loop has completed and all data is written. If an OnComponentOK trigger is inadvertently used

instead it will call the commit immediately the loop is started and will close the database connection

before data had been written, leading to an error when tDBOutput tries to access it.

Complete the job by adding a note to the screen similar to:

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

JOHN TUCKER PAGE 39

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

The completed job should now look like this.

The job is now ready to run in Talend Studio but check that the database table is empty prior to

execution or a primary key violation may occur.

After completion the results can be viewed in PGAdmin or any similar client.

JOHN TUCKER PAGE 40

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

This is a rudimentary routine designed to demonstrate both the row generator and loading data into

PostgreSQL hosted on AWS RDS. Flexibility could be enhanced by using context variables loaded via

file or database to vary parameters such as number of store staff and total stores and update or

insert used to prevent key errors on subsequent runs.

12. Create job to generate timesheets
The second job to simulate the creation of timesheets for the staff generated in the previous job and

write the data as a JSON file to the S3 bucket defined earlier. This will trigger the AWS Lambda

function which writes a message to AWS Simple Queue Service (SQS).

Create a new job in the repository called j102_PutStaffHoursInS3Bucket.

Drop the following components onto the design area:

tprejob

tFileInputDelimited x 2

tContextLoad

tDBConnection

tSetGlobalVar

tLoop x 3

tJava

tDBInput

tFileOutputDelimited

tFileOutputJSON

tFileDelete x 2

tS3Connection

tS3Put

Arrange them in a similar layout to below.

JOHN TUCKER PAGE 41

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Create the following connections between the components:

From Component To Component Join Type

tprejob 1st tFileInputDelimited OnComponentOk trigger

1st tFileInputDelimited tContextLoad Row Main

tContextLoad tDBConnection OnComponentOk trigger

tDBConnection tSetGlobalVar OnComponentOk trigger

tSetGlobalVar 1st tLoop OnComponentOk trigger

1st tLoop 2nd tLoop Iterate

2nd tLoop 3rd tLoop Iterate

3rd tLoop tJava Iterate

tJava tDBInput OnComponentOk trigger

tDBInput tFileOutputDelimited Row Main

1st tLoop 2nd tFileInputDelimited OnSubjobOk trigger

2nd tFileInputDelimited tFileOutputJSON Row Main

tFileOutputJSON 1st tFileDelete OnComponentOk trigger

tFileOutputJSON tS3Connection OnComponentOk trigger

tS3Connection tS3Put OnComponentOk trigger

tS3Put 2nd tFileDelete OnComponentOk trigger

The resulting diagram should be similar to the following example:

Configure the components as follows:

tPrejob requires no configuration and just initiates a task each time the job starts and is guaranteed

to run prior to the main job.

1st tFileInputDelimited reads in data used to populate the context variables

JOHN TUCKER PAGE 42

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Using a file in the following format:

Select the component in the design area and click the Component tab to display the editor.

Use the context value of filename to identify the file and use the default values “\n” and “;” for row

and field separators. There are zero header and footer lines and skip empty rows. Click on the Edit

Schema ellipsis to check the definition.

JOHN TUCKER PAGE 43

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

The schema should consist of a key value pair both of string type. Press OK to close the editor.

Select the View option in the menu to display the label format.

Modify the label format from __UNIQUE_NAME__ to Read Context Into File

__UNIQUE_NAME__ . This will give a user-friendly label to the component but also retain the

component name to assist with monitoring. Labelling all subsequent components should follow a

similar pattern.

tContextLoad takes the file data imported in the previous component and uses it to populate the

context variables named in the file. No configuration is necessary on this component as the default

values are sufficient.

Label the component “Load File Data To Context” using the method previously shown.

JOHN TUCKER PAGE 44

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

tDBConnection is used to connect to the Postgresql instance which is running in AWS RDS as

configured previously.

Select PostgreSQL as the database with version v9 or later. The Host value will be the URL shown in

the AWS RDS console for the instance. Port should be the standard value 5432 unless a different

setup has been used. The Database name will be RetailPOC and the public schema is used. Finally,

Username and Password refer to the local user set up in RDS for the instance. A shared connection

is not used in this case and since the job will just be ran in Studio a data source alias is not required

either and both check boxes can remain unchecked.

Go into the view option and label the component “AWS RDS Postgres Connection”.

tSetGlobalVar initialises the variable for holding the current week number, day number and store

code in the global cache. Click the component in the design area and select the Component tab in

the bottom pane to show the editor.

From the Basic Settings option, press the green + icon to create a new row and name it “vWeekNo”.

Assign a default value of “”. Repeat the process for vDayNo and vStoreCode and add a user-friendly

label “Initialise Globals” to the component.

Three nested loops are used to generate the store staff data.

The first tLoop component iterates through the defined stores.

JOHN TUCKER PAGE 45

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Select For loop as the type use the branch context values to define From and To parameters with a

step of 1. Once complete modify the label to be “Store Loop”

The second tLoop processes the week values.

Similar in definition to the previous component but use the week start and end values from the

context. Label the component “Week Loop”.

The third tLoop traverses the day values.

Similar configuration again but select day values from the context. Label the component “DayLoop”.

JOHN TUCKER PAGE 46

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

tJava is used to set the current store, week and day values into the global variables for each iteration

of the inner loop.

Assign vStoreCode the current value of the outer loop, vWeekNo the current value of the middle

loop and vDayNo the value of the inner loop as shown in the diagram.

Make sure the CURRENT_VALUE property is used and not CURRENT_ITERATION. Although they will be

the same if the loops all start from 1 this doesn’t have to be the case. For example, if branches 3 to 4

only were specified in the context range then the for the first iteration the value of CURRENT_VALUE

would be 3 but CURRENT_ITERATION has a value of 1.

Label the component “Set Globals”.

tDBInput retrieves data from the PostgreSQL database by running a query incorporating the global

variables to generate simulated sales hours for each store on a daily basis.

Select PostgreSQL as the database type and check the Use an existing connection option. Select the

DB connection previously configured and the Table Name “tbstorestaff”. Select Edit schema to call

the editor.

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

JOHN TUCKER PAGE 47

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Click the green plus icon to add each row and add the following entries to the schema.

Column Type

week_no Integer

day_no Integer

store_code Integer

hours_worked Integer

employee_no Integer

first_name String

last_name String

Press OK to close the schema editor the enter the following text into the Query field.

"SELECT " + ((String)globalMap.get("vWeekNo")) + " AS WeekNo, "

 + ((String)globalMap.get("vDayNo")) + " AS DayNo,

 store_code,

 6 AS HoursWorked,

 employee_no,

 first_name,

 last_name

FROM tbstorestaff

WHERE store_code =" + ((String)globalMap.get("vStoreCode"))

+ " ORDER BY RANDOM()

LIMIT 10"

The query models the rules of the proof of concept. Each store is open 12 hours a day and has a full

time equivalent of 5, representing a total of 60 hours. Staff work in 6 hour shifts therefore a total of

10 staff from a pool of 20 is required for each store per day.

Note the query is constructed using dynamic SQL to incorporate the global variables. There may be

concerns about security vulnerability from SQL injection and if this was public facing such as a web site

query I would agree. In this case it is only internal and doesn’t present a risk but if concern remained

it could be redesigned to use a parametrised stored procedure instead.

Label the component “Read Postgres Storestaff”.

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg

JOHN TUCKER PAGE 48

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

tFileOutputDelimited creates a temporary output file used to store the data retrieved from

PostgreSQL. Ultimately the data will be written to a JSON format file however it is created using an

iterative method requiring thew output file to be regularly appended. JSON files in Talend don’t have

this option and would be overwritten with each iteration therefore the temporary delimited file

which can be appended is used instead and this file used later to create the JSON document in a

single pass.

Enter the filename and leave the separators with the default values. Click on Edit schema to ensure

it is the same as the tDBInput component. Ensure that the Append option is checked then label the

component “Temp Delimited File”.

The second tFileInputDelimited component is used to read the completed temporary file from the

previous section. Initiation is by an OnSubjobOk trigger from the outer tLoop component. Using this

type of trigger ensures that the loop iterations are fully complete including the writing of the

temporary file, prior to it being consumed.

The schema will need to match the temporary file, and this can be achieved by clicking the ellipsis

and manually entering the values. An alternative way that may be easier and avoid cumulative errors

JOHN TUCKER PAGE 49

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

is to save the schema from the tFileOutputDelimited component to the repository as a generic

schema, which can then be used to set the schema on this component.

To do this return to the tFileOutputDelimited component and click the ellipsis to enter the schema

editor.

Press the disk icon to Save as generic schema

JOHN TUCKER PAGE 50

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Click OK to accept the default location which equates to Generic schemas folder in the Metadata

section of the repository.

Name the schema “staffhours” and click OK to complete, then return to the second

tFileInputDelimited component.

Select the Repository option from the Schema drop-down list which will add an edit control for the

repository schema name.

Click the ellipsis next to the control to call the repository viewer.

JOHN TUCKER PAGE 51

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

 Expand the Generic schemas section. Select staffhours and click OK to complete. You can check the

schema by clicking Edit schema and selecting the View Schema option.

JOHN TUCKER PAGE 52

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

File name should match the tFileOutputDelimited component and the separators will be the default

values. There are no header or footer rows and empty rows can be skipped. Label the component

“Read Temp File”.

tFileOutputJSON will output the data read from the temporary file in JSON format. A very basic

format is used for this POC with the fields of each record presented in a single data block with no

nesting.

Inset the filename which will be an initial location prior to being stored in an S3 bucket. The name of

the data block can be left as “data” and ensure the schema matches the input file by pressing Sync

columns.

Label the component “JSON Output File”.

The first tFileDelete component removes the temporary delimited file after the JSON file has been

created.

Enter the file name and label the component “Delete Temp Delimited File”.

Connection to the S3 bucket is initiated by the tS3Connection component.

JOHN TUCKER PAGE 53

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Use the keys generated when creating the bucket, as described earlier in this document and select

the AWS Region which should match the bucket location. Label the component “AWS S3

Connection”

Having defined the connection, tS3Put is used to move the JSON file to the bucket.

Check the Use an existing connection option and select the S3 connection from the list. Add the

bucket name and the Key which is the S3 equivalent of file name. To prevent over writing a

timestamp will be concatenated onto the name using Talend date functions. The key will take the

form "RetailPOC_" + TalendDate.formatDate("ddMMyyyy_HHmmss",TalendDate.getCurrentDate()).

Enter the location of the JSON file and label the component “Put JSON File in S3 Bucket”.

The final action of the job is to remove the local JSON file after a copy has been stored in S3, using a

second tFileDelete component.

JOHN TUCKER PAGE 54

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Enter the location of the JSON file and label the component “Delete Local JSON File”

To complete the job, add a note to the design area similar to the following:

The finished procedure will look similar to the illustration below.

JOHN TUCKER PAGE 55

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Unlike the previous job, which was just ran in Open Studio, this task will be deployed onto the AWS

EC2 instance and ran as a stand-alone job. To begin the build, save the job then right click on its

name under Job Designs in the repository pane and select Build Job.

The Build Job options will be displayed and in this case all default values are acceptable.

JOHN TUCKER PAGE 56

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Click on OK to begin the build and once complete a zip file will be created in the location specified. In

this case that is the root folder of Talend Studio although that can be changed if required.

13. Create job to write to Snowflake
The third Talend job responds to messages arriving on the SQS queue. Messages are created by the

AWS Lambda function that responds to files being placed in the S3 bucket by the previous job. After

initiation this process will retrieve the file key from the message body and use it to download the

JSON file from the S3 bucket. On receiving the file, the data, simulated staff timesheets, will be

loaded into Snowflake for analysis later. The local JSON file will then be archived.

Create a new job in the repository called j103_ReadSQSandWritetoSnowflake.

Drop the following components onto the design area:

tPrejob

tFileInputDelimited

tContextLoad

tSetGlobalVar

tPostjob

tFixedFlowInput

tLogRow

tSQSConnection

tLoop

tJava

tSQSQueueAttributes

tSleep

tFilterRow

tJavaRow X 4

tSQSInput

tS3Connection

tS3Get

tFileExist

tDBConnection

tFileInputJSON

tDBOutput

tFileCopy

tDBCommit

Arrange the components in a similar way to the following diagram.

JOHN TUCKER PAGE 57

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Now create the joins between the components according to the following table.

From Component To Component Join Type

tPrejob tFileInputDelimited OnComponentOk trigger

tFileInputDelimited tContextLoad Row Main

tContextLoad tSetGlobalVar Row Main

tPostjob tFixedFlowInput OnComponentOk trigger

tFixedFlowInput tLogRow Row Main

tSQSConnection tLoop OnComponentOk trigger

tLoop tJava Iteration

tJava tSQSQueueAttributes OnComponentOk trigger

tSQSQueueAttributes tSleep OnSubjobOk trigger

tSQSQueueAttributes tFilterRow Row Main

tFilterRow 1st tJavaRow Row Filter

1st tJavaRow tSQSInput OnComponentOk trigger

tSQSInput 2nd tJavaRow Row Main

2nd tJavaRow tS3Get OnComponentOk trigger

tS3Connection tS3Get OnComponentOk trigger

tS3Get tFileExist OnComponentOk trigger

tFileExist tDBConnection Run if trigger

tDBConnection tFileInputJSON OnComponentOk trigger

tFileInputJSON tFileCopy OnComponentOk trigger

tFileInputJSON 3rd tJavaRow Row Main

3rd tJavaRow 4th tJavaRow Row Main

4th tJavaRow tDBOutput Row Main

tFileInputJSON tDBCommit OnSubjobOk trigger

Once complete the job in the design area should resemble the following illustration.

JOHN TUCKER PAGE 58

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

The components can now be configured using the following steps:

tPrejob requires no configuration and just initiates a task each time the job starts and is guaranteed

to run prior to the main job.

1st tFileInputDelimited reads in data used to populate the context variables

Using a file in the following format:

Select the component in the design area and click the Component tab to display the editor.

JOHN TUCKER PAGE 59

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Use the context value of filename to identify the file and use the default values “\n” and “;” for row

and field separators. There are zero header and footer lines and skip empty rows. Click on the Edit

Schema ellipsis to check the definition.

The schema should consist of a key value pair both of string type. Press OK to close the editor.

Select the View option in the menu to display the label format.

Modify the label format from __UNIQUE_NAME__ to Read Context Info File

__UNIQUE_NAME__ . This will give a user-friendly label to the component but also retain the

component name to assist with monitoring. Labelling all subsequent components should follow a

similar pattern.

JOHN TUCKER PAGE 60

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

tContextLoad takes the file data imported in the previous component and uses it to populate the

context variables named in the file. No configuration is necessary on this component as the default

values are sufficient.

Label the component “Load File Data To Context” using the method previously shown.

tSetGlobalVar initialises the variable for holding the number of iterations, file found status and S3

bucket key in the global cache. Click the component in the design area and select the Component

tab in the bottom pane to show the editor.

From the Basic Settings option, press the green + icon to create a row and name it “vIterations”.

Assign a default value of 0. Repeat the process for “vFilesFound” and “vBucketKey” which has a

default value of “” and add a user-friendly label “Initialise Globals” to the component.

tPostjob requires no configuration initiating a task each time the job completes and is guaranteed to

run after the main job. Since the job runs on an infinite loop this component and its associated sub

job will only be called in the event of termination, but it is useful for debugging.

tFixedFlowInput generates a data flow using the values of the global variables.

Click the Edit schema ellipsis to create the schema.

JOHN TUCKER PAGE 61

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Click the green + icon to add 2 rows for ”IterationsMade” and “FilesFound”, both of integer type.

Press OK to exit the editor.

Select single table mode and assign the following values to the columns:

Column Value

IterationsMade ((Integer)globalMap.get("vIterations"))

FilesFound ((Integer)globalMap.get("vFilesFound"))

A more reliable way to enter the global variable values is to allow Talend to look them up, avoiding

transcription errors. Place the cursor in the value field and press CTRL and Enter simultaneously to

bring up a list of system variables.

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

JOHN TUCKER PAGE 62

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Scrolling through the list will eventually find the correct variable but a filter can be applied to make

the process easier. Find the component name where the variable is initialised which in this case is

tSetGlobalVar. When the list is displayed type “tse” (case insensitive) and the list will reduce to the

entries applicable to that component only including the global variables.

Move the cursor to the required entry and click to insert the value. Notice that by default it always

casts the variable to a String. To change the value to an integer simply overtype the cast from String

to Integer. Repeat the process for both global variables and label the component “Create Rows

From Globals”.

A tLogRow component is used to display the data flow values on the standard output.

Select the Vertical mode option for clarity and label the component “Write To Log”.

Connection to the AWS SQS queue is configured via the tSQSConnection component.

JOHN TUCKER PAGE 63

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

The Access key identifier can be retrieved by viewing the “My Security Credentials” option for your

account in the AWS console.

The secret key will be in the file produced when the key pair were generated and should have been

stored in a safe place. Select the region that matches the SQS queue location and label the

component “AWS SQS Connection”.

Unlike the JMS and MOM components for queue monitoring, the SQS Input version does not have

an option to keep monitoring the queue and will terminate after use. To provide monitoring

functionality a tLoop is used with a perpetual condition to constantly run the job unless manually

terminated.

A While loop is selected and arbitrary conditions applied such that it was always equate to true,

causing the loop to continue indefinitely. A label “Always True Loop” should be assigned to the

component.

The tJava component is called on each iteration of the loop to increment the counter in the global

map,

JOHN TUCKER PAGE 64

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

The java snippet retrieves the value of the global variable vIterations as an integer, increments it

and sends the new value back to the global map. Label the component “Increment Iterations

Count”.

tSQSQueueAttributes allows a peek at the SQS queue status allowing the program to decide

whether to apply message retrieval logic for the current iteration of the loop or not. A lot of

information about the queue is returned but the item of interest is the number of messages.

Check the “Use an existing connection” option and select the connection component from the list.

Add the queue name which can be retrieved from the AWS SQS console.

JOHN TUCKER PAGE 65

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Make sure to place the value in double quotes as it is a string, otherwise Talend will treat it as a

variable and cause an error. Clicking the Edit schema ellipsis will show the information returned

from SQS.

The first item “ApproximateNumberOfMessages” is the metric that is of interest to this procedure.

Label the component “SQS Queue Attributes”.

The tSleep component will introduce a pause into the loop iteration controlled by the value of the

context variable defined in the context file.

Attached by an OnComponentOK it will be fired every iteration of the loop. Label the component

“Sleep Between Iterations”

A tFilterRow is used to control the program flow based on the SQS status data returned.

JOHN TUCKER PAGE 66

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Click the green + icon to add a filter row and select the “ApproximateNumberOfMessages” option

from the InputColumn drop-down list. Leave the Function empty and select “Greater than” as the

Operator. Add a Value of 0 to allow the filter when message(s) are present and add the label “SQS

Messages Found”.

A tJavaRow component is used to increment the message found count in the global map.

Very similar to the earlier tJava component but called via a filer Row rather than a trigger. The java

snippet retrieves the value of the global variable vFilesFound as an integer, increments it and sends

the new value back to the global map. Label the component “Increment Found Count”.

SQS Messages are consumed by the tSQSInput component. It is configured using the same

information as the tSQSQueueAttributes component.

Check the “Use an existing connection” option and select the connection component from the list.

Add the queue name which can be retrieved from the AWS SQS console as previously shown. Label

the component “Consume SQS Queue”.

The object key for the file in S3 storage is contained in the body of the message, having been placed

there by the AWS Lambda function. A second tJavaRow component is used to assign the key value

to the vBucketKey variable in the global map.

JOHN TUCKER PAGE 67

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

The simple java snippet overwrites the current value with the contents of the message body. Label

the component “Write Bucket Key To Global”.

Connection to the S3 bucket is initiated by the tS3Connection component.

Use the keys generated when creating the bucket, as described earlier in this document and select

the AWS Region which should match the bucket location. Label the component “AWS S3

Connection”

The tS3Get component is used to retrieve the file form the S3 bucket using the global bucket key

variable assigned previously.

Check the “Use an existing connection” option and select the connection component from the list.

Add the bucket name "emeraldmill.sales" and retrieve the variable from the global map for the key,

((String)globalMap.get("vBucketKey")). In the File editor add the full path name of the local file that

it will be saved to, "C:/talend_files/POC/Files/In/staffhours.json". Label the component “Get JSON

File From S3 Bucket”.

JOHN TUCKER PAGE 68

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

A tFileExist component is used to check the success of the previous operation by validating the

existence of the local file copy after download from S3.

Add the name of the local file into the File name/stream editor and label the component “Check

Staff Hours File Exists”

A tDBConnection component is configured to access the database set up earlier in this document

using the SnowflakeDB account.

This proof of concept is set up to use a trial Snowflake account, but it could easily be converted to use

a similar service such as AWS Redshift or Google cloud platform (GCP) Big Query. Alternatively, any

ANSI compliant RDBMS, cloud based or local could be used.

Select Snowflake as the database and enter account number together with User Id & Password. The

Warehouse, Schema and Database fields refer to the Snowflake setup earlier, “COMPUTE_WH”,

“PUBLIC” and “RETAIL_POC” in this case. Label the component “Snowflake Connection”.

The local JSON file downloaded from S3 is accessed by the tFileInputJSON component.

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

JOHN TUCKER PAGE 69

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

A schema created for the previous job and saved in the repository as “staffhours” can be reused as

the JSON file contains the same field layout. Select the Repository option from the Schema drop-

down list which will add an edit control for the repository schema name.

Click the ellipsis next to the control to call the repository viewer.

 Expand the Generic schemas section. Select staffhours and click OK to complete. You can check the

schema by clicking Edit schema and selecting the View Schema option.

The file will be read using JsonPath which is the JSON equivalent of XPath, utilising the latest version

of the API 2.1.0. Filename will be the local JSON file path and the loop expression should be

"$.data[*]" which will retrieve data for each occurrence of the “data” node.

JOHN TUCKER PAGE 70

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

In the mapping section the values in the Json query column should match the previous column but

be enclosed in double quotes.

Ensure that the “Use the loop node as root” is checked in the Advanced settings section then label

the component “Read JSON Staff Hours File”.

A third tJavaRow component is used to clear the value of the bucket key global variable.

JOHN TUCKER PAGE 71

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

To ensure the data flow passes through the component click the Sync columns button followed by

Generate code. This will generate code assigning each input value to a corresponding output. Failure

to complete these steps would mean the input data was lost to the chain downstream from this

component.

Always do the previous steps first prior to any alterations otherwise Generate code will delete any

work you have done in the editor and replace with the input output assignment.

Add this line below the generated code to clear the variable “globalMap.put("vBucketKey", "");”

and label the component “Clear S3 Bucket Key”.

A fourth tJavaRow component is used to re-order the output into the format requires by Snowflake.

Click on the Edit schema ellipsis to call the editor.

Modify the output schema by changing the column name to upper case and changing the order as

shown in the diagram above. Click OK to close the editor then Generate code. The correct output

should be produced. Label the component “Reorder Output”.

Writing the data to the SnowflakeDB table is handled by a tDBOutput component.

Click Sync columns to incorporate any changes made to the previous component. Select Snowflake

as the database and the Snowflake connection component from the list. Set the table name to

“TBSTAFFHOURS” with the Output Action of “INSERT”. Label the component “Write to Snowflake”.

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

JOHN TUCKER PAGE 72

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

A tFileCopy component is used to archive the local JSON file after use.

Enter the full path of JSON file "C:/talend_files/POC/Files/In/staffhours.json" and the destination

directory "C:/talend_files/POC/Files/In/done". Check the Rename option and add the following

expression for the Destination filename "staffhours_" +

TalendDate.formatDate("ddMMyyyy_HHmmss",TalendDate.getCurrentDate()) + ".json".

Check the Remove source file, Replace existing file and Create the directory if it doesn’t exist

options and label the component “Archive JSON File”.

The final component is tDBCommit to commit Snowflake changes to the database.

Select Snowflake as the database and the DB connection from the list. Check the Close Connection

box.

As the commit operation is initiated by an OnSubjobOk trigger from the routine that includes the

Snowflake output component, completion of the database write operation is guaranteed prior to the

commit. It is therefore safe to close the connection as part of the commit.

Label the component as “Snowflake Commit” and this completes the configuration of the

components. For documentation purposes add the following note to the design area.

The completed job should resemble the illustration below.

https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://commons.wikimedia.org/wiki/File:Oxygen480-actions-help-hint.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

JOHN TUCKER PAGE 73

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Build the job as stand-alone to run on the EC2 instance. Begin the build by saving the job then right

click on its name under Job Designs in the repository pane and select Build Job.

JOHN TUCKER PAGE 74

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Accept all default values in the build screen and click Finish to complete.

Once complete a zip file will be created in the location specified. In this case that is the root folder of

Talend Studio although that can be changed if required.

14. Deploy jobs to EC2
The deployment process is identical for both Talend jobs. Copy the entire zip files produced by the

build process to the EC2 server and extract the contents to the desired location. Once extracted look

in the folder structures for the windows batch files j102_PutStaffHoursInS3Bucket_run.bat and

j103_ReadSQSandWritetoSnowflake_run.bat .

JOHN TUCKER PAGE 75

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

Clicking on either batch file will run the respective job although they could also be running via Task

Scheduler or if the subscription product was used, be submitted by Talend Job Server.

Store staff records have already been generated. To run the rest of the process, double-click the

j103_ReadSQSandWritetoSnowflake_run.bat file which will start the SQS queue monitoring job in a

loop. Once initiated this will remain active until manually terminated assuming no errors intervene.

Check the context file for the Talend job to generate time sheet data.

Timesheets for all stores for week 2 should be generated. Click the

j102_PutStaffHoursInS3Bucket_run.bat file to initiate the process which will launch a separate

command window which closes on completion.

The timesheet data is generated in Talend and sent as a JSON format file to an S3 bucket. Arrival in

the bucket triggers an AWS Lambda function which writes the file name to an SQS message. The

JOHN TUCKER PAGE 76

TALEND CONNECT TO AWS AND SNOWFLAKE TUTORIAL

other Talend job is monitoring the SQS queue and on receipt of a new message uses it to retrieve

the JSON file from S3. The data is then parsed and written to SnowflakeDB.

That completes this tutorial. In the real world the data would have come from multiple sources

rather than being simulated by Talend but the purpose of this proof of concept was to demonstrate

the connectivity capabilities of the product using modern cloud-based technologies.

